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1. Whatis Cognition?

According to the Oxford English Dictionary:
Cognition is

( Knowledge

Knowing, Knowledge Acquisition

{  Knowledge Representation
Contextual Knowledge

| Storage of Knowledge

( Perception

Perceiving, Sensing of the Environment
Adaptation to the Environment
Learning from the Environment

Dealing with Uncertainty:
1. Probabilistic Reasoning
or Conceiving ( 2. Hypothesizing and
Decision-making

\  “The Bayesian framework”

an Act Control
| Approximate Dynamic
‘ Programming

etc. ! Energy Efficiency
| Robustness

The human brain has all these attributes, and there is plausible evidence for
the Bayesian framework -- hence the “Bayesian brain”.
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2. Cognitive Dynamic
Systems Defined

A Cognitive Dynamic System is a system
that processes information over the course
of time by performing the following
functions:

e Sense the environment;
e Jearn from the environment
and adapt to its statistical variations;
* build a predictive model of prescribed
aspects of the environment

and thereby develop rules of behaviour for
the execution of prescribed tasks, in the
face of environmental uncertainties,
efficiently and reliably in a cost-effective
manner.
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3. Emerging Applications

Cognitive radio
(Candidate for 5th generation wireless
communications)
Cognitive radar

Cognitive car

Cognitive genome

Cognitive optimization

Cognitive software
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Users of 1...m-1 m m+l--- M
the cognitive
radio network

Radio Environment
(Wireless World)

Action:

Transmission
of modulated
message signal
due to user m

Interferring signals
received from
users 1,....m-1, m+1,.... M

Dynamic

spectrum analyze Radio-
and, transmit- scene
power analyzer

controller Coherent

receiver

Information on
spectrum holes and
signal-to-noise ratio
at the receiver
input of user m

Feedback

Estimate of original
channel

message signal
belonging to user m

Figure 1: Cognitive signal-processing cycle for user m of
cognitive radio network; the diagram also includes elements
of the receiver of user m
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Statistical models of clutter and target-plus-clutter

provided by the radar-scene analyzer

v

v v
X¢-1)e-1,| Tracking X1 . X Tracking X
predictor » Unit-delay—» Xr1jr2 —> filter ot
Unit-delay
Notations
t: discrete-time
Xqt filtered state vector of probabilities of targets being present in the search space at 7 given

spectral measurements up to and including time #

The other data vectors in the diagram are similarly defined

Figure 2: Block diagram of the Bayesian direct
filtering system
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4. Global Feedback

“A Facilitator of Computational Intelligence”

e The human brain is a living example of a
cognitive dynamic system with global
feedback in many of its parts, be that the
visual system, auditory system, or motor
control.

* Global feedback is responsible for the
coordination of different constituents of a
cognitive dynamic system.

 Global feedback is an inherent property of
all cognitive dynamic systems, but global
feedback by itself will 7of make a dynamic
system cognitive.

Cognitive Information Processing, Greece, June 2008 (Haykin) 7



5. Why sub-optimality should
be the objective of cognitive
dynamic systems?

 Optimality of performance versus
robustness of behaviour.

* Global optimality of a cognitive dynamic
system is not practically feasible:

e Infeasible computability
 Curse-of-dimensionality
 Large-scale nature of the system

Hence, the practical requirement of
having to settle for a sub-optimal solution
of the system design

 Trade-off global optimality for
computational tractability and robust
behaviour.
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Criterion for sub-optimality
DO AS BEST AS YOU CAN, AND NOT MORE

e This statement is the essence of what the
human brain does on a daily basis:

Provide the *“best” solution in
the most reliable fashion for the

task at hand, given limited
resources.

* Key question: How do we define “best”?
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6. The Bayesian Filter:
A powertul tool for
cognitive information
processing

Problem statement:

Given a nonlinear dynamic system,
estimate the hidden state of the system in a
recursive manner by processing a sequence
of noisy observations dependent on the
state.

e The Bayesian filter provides a unifying
framework for the optimal solution of this
problem, at least in a conceptual sense.

e Unfortunately, except in a few special cases,

the Bayesian filter is not implementable in
practice -- hence the need for approximation.

Cognitive Information Processing, Greece, June 2008 (Haykin)

10



Bayesian Filter (continued)

State-space Model

1. System (state) Model

X = a(xt)+oo

t+1 t

2. Measurement model
¥, = bx)+v,

where t = discrete time
X, = state at time ¢

y;= observation at time
w; = dynamic noise

V. = measurement noise

Assumptions:
e Nonlinear functions a(.) and b(.) are known

* Dynamic noise 0, and measurement noise v, are

statistically independent Gaussian processes of
zero mean and known covariance matrices.

Cognitive Information Processing, Greece, June 2008 (Haykin)

11



Bayesian filter (continued)

Time-update equation:

P |Y, ) = Inp(xt X )P Yo

R

predictive prior old
distribution distribution posterior
distribution

where R" denotes the n-dimensional state space.

Measurement-update equation:

_ 1
p(xt‘Yt) - Z_t p(XlL Yf—l)l(yf‘xf)
Updated Predictive Likelihood
posterior distribution function

distribution

where Z; is the normalizing constant defined by

Z, = Ip(xt‘Yt-l)l(yt Xt)dxt
R
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Bayesian Filter (continued)

 The celebrated Kalman filter is a special
case of the Bayesian filter, assuming that
the dynamic system is linear.

 Except for this special case and couple of
other cases, exact computation of the

predictive distribution p(x,|Y, ) is not
feasible.

* We therefore have to abandon optimality
and be content with a sub-optimal
nonlinear filtering algorithm that is
computationally tractable.
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Bayesian Filtering (continued)

Two Approaches for Approximate
Nonlinear Filtering

1. Direct numerical approximation of the

posterior in a local sense:

e Extended Kalman filter

e Unscented Kalman filter (Julier,
Ulhmann and Durrant-Whyte, 2000)

e Central-difference Kalman filter
(Norgaard, Poulson, and Ravn, 2000).

e Cubature Kalman filter
(Arasaratnam and Haykin, 2008).

2. Indirect numerical approximation of the
posterior in a global sense:
e Particle filters
(Gordon, Salmond, and Smith, 1993)
e Roots embedded in Monte Carlo
simulation
e Computationally demanding
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Extended Kalman Filter

 Linearize the system model around the
filtered estimate X, ,, and linearize the

measurement model around the predicted
estimate X, , ,

e Attributes and Limitations
(i) The EKEF is simple to implement
(ii) Estimation accuracy of the EKF is
g00d for nonlinearities of a mild

sort; otherwise, it is often highly
suboptimal.
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7. The Cubature Kalman
Filter

(Arasaratnam and Haykin, IEEE Trans.
Automatic Control, accepted for publication
subject to revisions)

At the heart of the Bayesian filter, we have to
compute integrals whose integrand is
expressed in the form

(Nonlinear function) X (Gaussian function)

 The challenge is to numerically approximate
the integral so as to completely preserve
second-order information about the state x
that is contained in the sequence of
observations

e The computational tool that accommodates

this requirement is the cubature rule (Cools,
1997).
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Cubature Kalman Filter (continued)
The Cubature Rule

e In mathematical terms, we have to
compute an integral for the generic form

h(f) = f f(x)exp x%dx 1)

R —_ —
Arbltray Normallzed
nonlinear Gaussian
function  function of zero mean and
unit covariance function

e To do the computation, the key step is to make a
change of variables from the Cartesian coordinate
system (in which the vector x is defined) to a
spherical-radial coordinate system:

X =rz subject to z'z=1 and x"x = /2

where 0 <r< oo
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Cubature Kalman Filter (continued)

e  We may thus express I as the radial integral
-1 2
I = J’Z)OS(r)rn exp(—r )dr

where S(r) is defined by the spherical integral

S(r) = f, / (rz)i0(2)

where 0(.) is the spherical surface measure on the region
: T

U, ={z subject to z z =1}

*  Working through a fair amount of mathematical details,
we finally arrive at the desired linear approximation:

h(f) = | nf(x)N(x;O, I)ax

R Standard
Gaussian
function

2n
=5 wf{e}
i=1

where { ¢} = cubature representations of the
state vector x.

W. =

1 . __ —
l %, 1_1,2,...,m_2n

2n
e The set EEZ., oolH constitutes the cubature points used to
L 0
numerically compute integrals of the form defined in Eq.

(D).
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Parameter Updates of the Cubature Kalman Filter

Time update

>

Xn\n-l

= E[xn|Yn_1]

IRM a(xn-l)]v(xn-l ;ﬁn-l |n-11 Pn—l \n-l)dxn-l

—_———

Nonlinear

state

Gaussian distribution

function

Measurement update

S 0
N X,. Xn\n-l Pn\n-l ny,n\n-l U
9 )
Yn yn\n-l Pyx, n|n-1 Pyy, n|n-1|]
[ ~————
Joint Joint Joint
variables mean covariance matrix
yn\n-l = I Mb(xn)N(Xn;Xn\n-l’ Pn\n-l)dxn
R N——
Nonlinear Gaussian function
measurement
function
Poo=( b(x)b (X )Nk, P dx—§ § .+
yy.nln-1 I b (Xn) (Xn) (Xn’Xn\n-l’ n\n-l) Xn_yn\n—lyn\n-l Qv,n
R —_— N——
Outer product Gaussian function Outer product Covariance
of of the . matrix
nonlinear estimate y,), |  measurement
measurement with itself noise
function
with itself
ny,n\n-l = Pyx,n\n-l

= IRM
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an (Xn)N(Xn;Xn\n-l’ Pn\n—l)dxn

| —

Outer
product
of x,, with
b(x;)

Gaussian function

A AT
~Xn|n-1¥n|n-1

P —

Outer product

of the

estimates

A d A
Xplp-1 and Yy|p-q

19



Recursive Cycle of the Cubature Kalman Filter

* The Kalman gain is computed as

G =P P!
n xy,n|n-1" yy,n|n-1

—1 . ° o o
where P nln-1 18 the inverse of the covariance matrix
P! .
yy,n|n-1

 Upon receiving the new observation y,, the filtered
estimate of the state x,, is computed in accordance with
the predictor-corrector formula:

Xnln =~ Xn|n-1 +Gn(yn_yn|n—l)

Updated Old Kalman Innovations process
estimate estimate  gain

e Correspondingly, the covariance matrix of the filtered
state estimation error is computed as shown by

_ T
1)n|n ~ T nln-1 _GnPyy, n|n—1Gn

Updated posterior distribution

p(xn‘Yn) = N(xn;f(

)

n|n’ Pn|n
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Properties of the Cubature Kalman Filter

Property 1: The cubature Kalman filter (CKF) is a derivative-
free on-line sequential-state estimator.

Property 2: Approximations of the moment integrals are all
linear in the number of adjustable parameters.

Property 3: Computational complexity of the cubature

Kalman filter grows as n®, where n is the dimensionality of
the state space.

Property 4: The cubature Kalman filter completely preserves
second-order information about the state that is contained in
the observations.

Property 5: The cubature Kalman filter inherits properties of
the linear Kalman filter, including square-root filtering for
improved accuracy and reliability.

Property 6: The cubature Kalman filter is the closest known
direct approximation to the Bayesian filter, outperforming
the extended Kalman filter and the central-difference
Kalman filter:

It eases the curse-of-dimensionality problem
but, by itself, does not overcome it.

Cognitive Information Processing, Greece, June 2008 (Haykin) 21



Computer Experiment:
Pattern Classification

Figure 3: True classification regions
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Supervised Learning

Training sample: {u, d;}

Input .| Multilayer perceptron -1
vector Wie1|r-1
u; Predictor I

Unit-time

delays
Wit
Desired Nonlinear
responStrhy. sequential-state —
d; estimator
Corrector

Figure 4: Block diagram of supervised learning
machinery
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Experimental Setup

e Used a 2-5-5-4 FFNN with softmax output
nonlinearity and the mean squared-error
criterion.

Total number of adjustable weights: 55 plus biases

e 1000 training examples drawn randomly from the
square region.

e DSSM:
Process equation: W= W+
Measurement equation: y,=b(w, X)) + V;

 Two training algorithms: EKF, and square-root
Kalman filter (SCKF).

 To check robustness of filters, 10% of the training
examples were mislabeled.
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Performance Comparison

45
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Figure S:
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9. On-going Research Projects
in My Laboratory

(i) Cubature Kalman Filter:
e Large-scale system applications involving
pattern recognition and approximate dynamic
programming.

(ii) Cognitive Radio Networks:
e Spectrum sensing
* Robust transmit power control
 Dynamic spectrum management
 Emergent behaviour

(iif) Cognitive Radar Networks:
e Sub-optimal control of inexpensive
(surveillance) radar
sensors, given limited computational resources

(iv) Cocktail Party Processor:
e Computational auditory scene analysis
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10. Concluding Remark

“Cognitive Dynamic Systems”
are
A Way of the Future
in

The 21st Century
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The new Website

http://soma.mcmaster.ca

Cognitive Dynamic Systems Workshop,
Niagara-on-the-Lake, May 2008, is available
and slides can be downloaded from the

following link

http://soma.mcmaster.ca/cds2008.php

Cognitive Information Processing, Greece, June 2008 (Haykin) 29



