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1.   What is Cognition?
According to the Oxford English Dictionary:
Cognition is

Knowledge
Knowing, Knowledge Acquisition

Knowledge Representation
Contextual Knowledge
Storage of Knowledge

Perception
Perceiving, Sensing of the Environment

Adaptation to the Environment
Learning from the Environment

Dealing with Uncertainty:
   1. Probabilistic Reasoning

or Conceiving    2. Hypothesizing and
           Decision-making
“The Bayesian framework”

an Act Control
Approximate Dynamic
      Programming

etc. Energy Efficiency
Robustness

The human brain has all these attributes, and there is plausible evidence for
the Bayesian framework -- hence the “Bayesian brain”.

{
{
{
{
{
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2.  Cognitive Dynamic
   Systems Defined

A Cognitive Dynamic System is a system
that processes information over the course
of time by performing the following
functions:

• Sense the environment;
• learn from the environment

and adapt to its statistical variations;
• build a predictive model of prescribed

aspects of the environment

and thereby develop rules of behaviour for
the execution of prescribed tasks, in the
face of environmental uncertainties,
efficiently and reliably in a cost-effective
manner.
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3.  Emerging Applications

Cognitive radio
     (Candidate for 5th generation wireless

             communications)

Cognitive radar

Cognitive car

Cognitive genome

.

.

.

Cognitive optimization

Cognitive software
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Figure 1: Cognitive signal-processing cycle for user m of
cognitive radio network; the diagram also includes elements
of the receiver of user m
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Figure 2:  Block diagram of the Bayesian direct
filtering system

xt-1|t-2
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Tracking
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Tracking
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           provided by the radar-scene analyzer

Notations

t:              discrete-time
xt|t:          filtered state vector of probabilities of targets being present in the search space at t given
                spectral measurements up to and including time t

The other data vectors in the diagram are similarly defined
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4.  Global Feedback

“A Facilitator of Computational Intelligence”

• The human brain is a living example of a
cognitive dynamic system with global
feedback in many of its parts, be that the
visual system, auditory system, or motor
control.

• Global feedback is responsible for the
coordination of different constituents of a
cognitive dynamic system.

• Global feedback is an inherent property of
all cognitive dynamic systems, but global
feedback by itself will not make a dynamic
system cognitive.
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5. Why sub-optimality should
be the objective of cognitive
 dynamic systems?

• Optimality of performance versus
robustness of behaviour.

• Global optimality of a cognitive dynamic
system is not practically feasible:

• Infeasible computability
• Curse-of-dimensionality
• Large-scale nature of the system

Hence, the practical requirement of
having to settle for a sub-optimal solution
of the system design

• Trade-off global optimality for
computational tractability and robust
behaviour.
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Criterion for sub-optimality

DO AS BEST AS YOU CAN, AND NOT MORE

• This statement is the essence of what the
human brain does on a daily basis:

Provide the “best” solution in
the most reliable fashion for the
task at hand, given limited
resources.

• Key question: How do we define “best”?
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6. The Bayesian Filter:
A powerful tool for
cognitive information
processing

Problem statement:

Given a nonlinear dynamic system,
estimate the hidden state of the system in a
recursive manner by processing a sequence
of noisy observations dependent on the
state.

• The Bayesian filter provides a unifying
framework for the optimal solution of this
problem, at least in a conceptual sense.

• Unfortunately, except in a few special cases,
the Bayesian filter is not implementable in
practice -- hence the need for approximation.
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Bayesian Filter (continued)

State-space Model

1. System (state) Model

2. Measurement model

where t = discrete time
xt = state at time t
yt = observation at time
ωt = dynamic noise

= measurement noise

Assumptions:

• Nonlinear functions a(.) and b(.) are known

• Dynamic noise ωt and measurement noise  are

statistically independent Gaussian processes of
zero mean and known covariance matrices.

xt 1+ a xt( ) ωt+=

yt b xt( ) νt+=

νt

νt
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Bayesian filter (continued)

Time-update equation:

where Rn denotes the n-dimensional state space.

Measurement-update equation:

where Zt is the normalizing constant defined by

p xt Yt-1( ) p xt xt-1( ) p xt-1 Yt-1( ) xt-1d

R
n

∫={ {

predictive              prior                old

distribution             distribution     posterior
                                                           distribution

{

p xt Yt( ) 1
Zt
----- p xt Yt-1( )l yt xt( )=

Updated                                         Predictive                Likelihood
posterior                                        distribution             function
distribution

{ { {

Zt p xt Yt-1( )l yt xt( ) xtd

R
n
∫=
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Bayesian Filter (continued)

• The celebrated Kalman filter is a special
case of the Bayesian filter, assuming that
the dynamic system is linear.

• Except for this special case and couple of
other cases, exact computation of the
predictive distribution  is not
feasible.

• We therefore have to abandon optimality
and be content with a sub-optimal
nonlinear filtering algorithm that is
computationally tractable.

p xt Yt-1( )
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Bayesian Filtering (continued)

Two Approaches for Approximate
Nonlinear Filtering

1. Direct numerical approximation of the
posterior in a local sense:
• Extended Kalman filter
• Unscented Kalman filter (Julier,

Ulhmann and Durrant-Whyte, 2000)
• Central-difference Kalman filter

(Nörgaard, Poulson, and Ravn, 2000).
• Cubature Kalman filter

(Arasaratnam and Haykin, 2008).

2. Indirect numerical approximation of the
posterior in a global sense:
• Particle filters

(Gordon, Salmond, and Smith, 1993)
• Roots embedded in Monte Carlo

simulation
• Computationally demanding
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Extended Kalman Filter

• Linearize the system model around the
filtered estimate , and linearize the

measurement model around the predicted
estimate

• Attributes and Limitations

(i) The EKF is simple to implement

(ii) Estimation accuracy of the EKF is
good for nonlinearities of a mild
sort; otherwise, it is often highly
suboptimal.

x̂t t

x̂t t 1–
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7. The Cubature Kalman
Filter

(Arasaratnam and Haykin, IEEE Trans.
Automatic Control, accepted for publication
subject to revisions)

• At the heart of the Bayesian filter, we have to
compute integrals whose integrand is
expressed in the form

(Nonlinear function) x (Gaussian function)

• The challenge is to numerically approximate
the integral so as to completely preserve
second-order information about the state x
that is contained in the sequence of
observations

• The computational tool that accommodates
this requirement is the cubature rule (Cools,
1997).
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Cubature Kalman Filter (continued)

The Cubature Rule

• In mathematical terms, we have to
compute an integral for the generic form

(1)

• To do the computation, the key step is to make a
change of variables from the Cartesian coordinate
system (in which the vector x is defined) to a
spherical-radial coordinate system:

x = rz subject to zTz = 1 and xTx = r2

where 0 < r < ∞

h f( ) f x( ) 1
2
---x

T
x– 

 exp xd

R
n

∫= {
Normalized
Gaussian
function of zero mean and
unit covariance function

{

Arbitray
nonlinear
function
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Cubature Kalman Filter (continued)

• We may thus express I as the radial integral

where S(r) is defined by the spherical integral

where σ(.) is the spherical surface measure on the region

• Working through a fair amount of mathematical details,
we finally arrive at the desired linear approximation:

where  = cubature representations of the

                      state vector x.

, i = 1, 2, ..., m = 2n

• The set constitutes the cubature points used to

numerically compute integrals of the form defined in Eq.
(1).

I S r( )r
n-1

r
2

–( )exp rd
0
∞
∫=

S r( ) f rz( ) σ z( )d
U n∫=

U n z subject to z
T

z, 1={ }=

h f( ) f x( )N x 0 I,;( ) xd
R

n∫= {Standard
Gaussian
function

ωif ξ i{ }
i=1

2n

∑≈

ξ i{ }

ωi
1
m
----=

ξ i ωi,
 
 
 

i=1

2n
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Parameter Updates of the Cubature Kalman Filter

Time update

Measurement update

x̂n n-1 E xn Yn-1[ ]=

a xn-1( )N xn-1;x̂n-1 n-1 Pn-1 n-1,( ) xn-1d
RM∫= { {Nonlinear

state                   Gaussian distribution
function

N
xn

yn

;
x̂n n-1

ŷn n-1

Pn n-1 Px y n n-1,

Pyx n n-1, Py y n n-1,

,
 
 
 
 

{ { {
Joint          Joint                          Joint
variables    mean              covariance matrix

ŷn n-1 b xn( )N xn x̂n n-1 Pn n-1,;( ) xnd
RM∫=

{ {

  Nonlinear           Gaussian function
measurement
   function

Py y n n-1, b xn( )bT xn( )N xn x̂n n-1 Pn n-1,;( ) xn ŷ– n n-1ŷn n-1
T Qν n,+d

RM∫= { { { {

Outer product          Gaussian function                   Outer product        Covariance
      of                                                                       of  the                      matrix
    nonlinear                                                             estimate yn|n-1      measurement
 measurement                                                          with itself                  noise
    function
  with itself

^

Px y n n-1, Pyx n n-1,=

xnbT xn( )N xn x̂n n-1 Pn n-1,;( ) xn x̂n n-1ŷn n-1
T

–d
RM∫= { { {

Outer              Gaussian function                        Outer product
product                                                                of the
of xn with                                                            estimates
b(xn) xn|n-1  and yn|n-1

^^
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Recursive Cycle of the Cubature Kalman Filter

• The Kalman gain is computed as

where  is the inverse of the covariance matrix

.

• Upon receiving the new observation yn, the filtered
estimate of the state xn is computed in accordance with
the predictor-corrector formula:

• Correspondingly, the covariance matrix of the filtered
state estimation error is computed as shown by

Updated posterior distribution

Gn Px y n n-1, Pyy,n n-1
1–

=

Pyy,n n-1
1–

Pyy,n n-1
1–

x̂n n x̂n n-1 Gn yn ŷn n-1–( )+=

{ { { {

Updated             Old          Kalman    Innovations process
estimate          estimate       gain

Pn n Pn n-1 GnPy y n n-1, Gn
T

–=

p xn Yn( ) N xn x̂n n Pn n,;( )=
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Properties of the Cubature Kalman Filter

Property 1: The cubature Kalman filter (CKF) is a derivative-
free on-line sequential-state estimator.

Property 2: Approximations of the moment integrals are all
linear in the number of adjustable parameters.

Property 3: Computational complexity of the cubature
Kalman filter grows as n3, where n is the dimensionality of
the state space.

Property 4: The cubature Kalman filter completely preserves
second-order information about the state that is contained in
the observations.

Property 5: The cubature Kalman filter inherits properties of
the linear Kalman filter, including square-root filtering for
improved accuracy and reliability.

Property 6: The cubature Kalman filter is the closest known
direct approximation to the Bayesian filter, outperforming
the extended Kalman filter and the central-difference
Kalman filter:

It eases the curse-of-dimensionality problem
but, by itself, does not overcome it.
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Computer Experiment:
Pattern Classification

Figure 3: True classification regions
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Supervised Learning

Training sample: {ut, dt}

Figure 4:  Block diagram of supervised learning
machinery
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^
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Experimental Setup

• Used a 2-5-5-4 FFNN with softmax output
nonlinearity and the mean squared-error
criterion.

Total number of adjustable weights: 55 plus biases

• 1000 training examples drawn randomly from the
square region.

• DSSM:
Process equation: wt = wt-1 + ωt

Measurement equation: yt = b(wt, xt) + νt

• Two training algorithms: EKF, and square-root
Kalman filter (SCKF).

• To check robustness of filters, 10% of the training
examples were mislabeled.
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Performance Comparison

Figure 5:
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9. On-going Research Projects
in My Laboratory

(i) Cubature Kalman Filter:
• Large-scale system applications involving

pattern recognition and approximate dynamic
programming.

(ii) Cognitive Radio Networks:
• Spectrum sensing
• Robust transmit power control
• Dynamic spectrum management
• Emergent behaviour

(iii) Cognitive Radar Networks:
• Sub-optimal control of inexpensive
   (surveillance) radar

sensors, given limited computational resources

(iv) Cocktail Party Processor:
• Computational auditory scene analysis
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10.   Concluding Remark

“Cognitive Dynamic Systems”

are

A Way of the Future

in

The 21st Century
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The new Website

http://soma.mcmaster.ca

Cognitive Dynamic Systems Workshop,
Niagara-on-the-Lake, May 2008, is available
and slides can be downloaded from the
following link

http://soma.mcmaster.ca/cds2008.php
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